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Abstract. A species’ distribution and abundance in both space and time play a pivotal role in ecology
and wildlife management. Collection of such large-scale information typically requires engagement of vol-
unteer citizens and tends to consist of non-repeated surveys made with a survey effort varying over space
and time. We here used a hierarchical single-census open population N-mixture model, which was recently
developed to handle such challenging census data, to describe the dynamics in the Finnish population sizes
of the reintroduced native Eurasian beaver (Castor fiber) and the invasive North American beaver (Castor
canadensis). The numbers of beaver winter lodges (i.e., family groups) were counted by volunteers in the
municipalities of Finland every third year during 1995–2013. The dynamics of both species followed Gom-
pertz logistic growth with immigration. Initial abundance of North American beavers increased with prox-
imity to the introduction sites as well as with the amount of water in the municipality. The intensively
hunted North American beaver population declined and the Eurasian beaver population increased during
the study period. The model generated reasonable estimates of both total Finnish and local numbers of
lodges, corrected for the incomplete detection. We conclude that the single-census N-mixture model
approach has clear potential when using citizen-science data for understanding spatio-temporal dynamics
of wild populations.
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INTRODUCTION

Understanding variation in distribution, abun-
dance, and density in space and time is at the
heart of ecology (Andrewartha and Birch 1954). A
particular challenge in current ecology is to study
abundances of organisms over spatial and tempo-
ral scales, which are larger than what typically
can be surveyed by researchers or research teams.
Such large-scale spatio-temporal resolution is
needed, for example, to understand how environ-
mental change will alter the distribution patterns
of species (Parmesan and Yohe 2003, Root et al.
2003) and what the community-level and

ecosystem consequences of such changes could be
(S�ekercio�glu et al. 2004). Further examples are the
sustainable management of wildlife populations
(Caughley and Sinclair 1994) and the control of
invasive species (Williams et al. 2002), which
require proper knowledge of distribution and
abundance or density of species concerned.
Addressing such large-scale ecological issues

critically depends on data collected by large
numbers of volunteers, who follow a simple pro-
tocol, the so-called citizen-science data (Silver-
town 2009). Citizen-science data present an
unusual opportunity for ecologists to conduct
research on hitherto challenging spatial and
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temporal scales (Dickinson et al. 2010, Bonney
et al. 2014). Despite clear benefits, citizen-science
data also present considerable analytical chal-
lenges before proper inferences can be drawn.
For example, spatio-temporal variation in survey
effort partly drives changes in range margin of
breeding birds in several countries when ranges
are inferred directly from atlas data (Kujala et al.
2013). Because standard statistical models fall
short, novel implementations or completely new
procedures need to be developed for the analysis
of citizen-science data (Dickinson et al. 2010,
Hochachka et al. 2012). One avenue, for exam-
ple, is to develop and explicitly take on board
metrics of data quality (Isaac and Pocock 2015,
Kelling et al. 2015a, b).

In recent years, hierarchical models (sensu Ber-
liner 1996) have become increasingly common in
ecology and wildlife management. A powerful
asset of ecological hierarchical models is that the
state process is described separately from the
observation process. The state process captures
the spatio-temporal dynamics of interest, whereas
the observation process links the changes in latent
(i.e., unmeasured) population abundance to the
census data (Royle and Dorazio 2008, K�ery and
Schaub 2012). By explicitly correcting observa-
tions for the errors arising from the observation
process, driven in particular by the incomplete
detection inherent to count data, hierarchical
models attain a clearer description of the ecologi-
cal processes of interest, thereby avoiding com-
mon biases occurring when using census data
directly (e.g., Freckleton et al. 2006, Knape and de
Valpine 2012). In the context of citizen-science
data, variation in the propensity of volunteers to
report their observations is likely to strongly influ-
ence the observation process parameter “detection
probability.” Nevertheless, provided the observa-
tion process can be described, hierarchical models
hence provide a fruitful platform for analysis of
citizen-science data.

From this perspective, a particularly exciting
recent development is the extension of Royle’s
(2004) N-mixture model to one-count-per-census-
period data by Dail and Madsen (2011) and
Hostetler and Chandler (2015). This “latest gener-
ation” of open population N-mixture models
presents a powerful approach for making good
use of citizen-science data when modeling time-
series data. This is because citizen-science data

typically consist of a single count made during
a survey period, whereas Royle’s (2004) original
formulation of the model for open populations
requires repeated counts to be made in each
survey period (the so-called primary period) over
two or more so-called secondary periods. The Dail
and Madsen (2011) generalization of this
approach requires time-series data, but a single
census per survey period suffices. Statistical
approaches for analysis of single-census data col-
lected during one survey period have also been
developed (e.g., S�olymos et al. 2012). The single-
census formulation of the open population
N-mixture model presents an integration of large-
scale population dynamics within a framework of
explicit estimation of the latent population abun-
dances. Such an integration has exciting applica-
tion in the study of population ecology (Buckland
et al. 2007), invasion ecology (Hooten et al. 2007),
and range expansion (Pagel and Schurr 2011), as
the approach opens up the research avenue of
spatial population dynamics from census data,
while correcting for bias caused by the observa-
tion process. With this theoretical framework in
place, it becomes an empirical question to evalu-
ate the performance of these models to real-life
data on wildlife populations.
In this paper, we explore the use of the Hostetler

and Chandler formulation for single-census open
population N-mixture models for assessing spatial
and temporal variation in abundance of the native
Eurasian and invasive North American beaver
populations in Finland. After being hunted to
extinction from Finland in the latter half of the
19th century, the native Eurasian beaver (Castor
fiber) was reintroduced in the country in the 1930s
with individuals from Norway. However, also
some North American beavers (Castor canadensis)
were brought to Finland because their status as a
distinct species was not known. Individuals of
both species were released to several locations, but
Eurasian beaver population survived and
increased only in western Finland, whereas North
American beavers flourished especially in eastern
Finland. North American beaver population
increased and spread much faster than the Eura-
sian beaver population. Currently, the North
American beaver occupies a larger range than the
Eurasian beaver and has expanded its range close
to the distribution area of the native beaver
(Fig. 1). From a game management perspective,
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the target is to control North American beaver
populations and to achieve a wider distribution
and a sustainable level of native Eurasian beaver
populations in Finland. To this end, information
on the temporal dynamics and spatial variation in
abundances of both species is an important aspect.

The observations we use were obtained from a
monitoring count of the number of active winter
lodges of beavers in Finland. Unlike in summer,
each beaver family uses only one lodge in winter.

Hence, the number of active winter lodges pro-
vides a reasonable estimate of the number of
beaver families. This count is conducted in
autumn every third year (1995–2013). The volun-
teers carrying out the surveys are hunters who, in
connection with hunting activity in autumn,
report the number of active beaver winter lodges
in the area covered by their hunting association.
Hunters were used as volunteer surveyors
because, firstly, Finland has approximately
300,000 hunters (6% of the population), and a sys-
tem dispersing information and instructions to all
hunters (Finnish Wildlife Agency). Second, most
hunters belong to a hunting association. In total,
there are about 4000 hunting associations in Fin-
land, each covering an area ranging from 2000 to
10,000 ha. By collecting reports of beaver winter
lodges from each hunting association, the scheme
facilitates effective reporting and avoids multiple
identifications of the same lodges. We here con-
sider the administrative borders of municipalities
as boundaries for sites, thereby grouping the
reports of all hunting associations belonging to a
municipality. The single-census open population
N-mixture model (Dail and Madsen 2011, Hoste-
tler and Chandler 2015) is an attractive approach
for modeling counts of beaver lodges, because it
is a single hierarchical model to assess population
dynamics while accounting for the spatio-
temporal uncertainty in the count data across
municipalities. Clearly, not all winter lodges in a
municipality are detected during a survey. Such
uncertainty is inherent in the beaver census data
as the level of reporting by volunteers differs both
spatially (across municipalities) and across years.

MATERIALS AND METHODS

Study species
The Eurasian beaver and the North American

beaver are morphologically and ecologically simi-
lar species. They are monogamous, herbivorous,
crepuscular, and nocturnal animals that defend a
territory by marking it with anal gland secretion
and castoreum (Willson 1971, Nolet and Rosell
1994). Both species feed mainly on broadleaved
trees, from which aspen (Populus tremula) and
birches (Betula sp.) are the most favored, and in
summer also aquatic plants are included in the
diet (Lahti and Helminen 1974). In addition to
deciduous trees nearby, beavers require an

Fig. 1. Map of Finland with the municipalities occu-
pied by Eurasian beavers (in blue) and by North
American beavers (in red). The various shades of blue
and red denote the game management districts within
the national range of the respective beaver species. The
part of Finland depicted in gray denotes the area
where beavers are assumed to be absent as winter bea-
ver lodges were never reported from these areas.
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aquatic habitat where they build a lodge (either
free-standing lodge, bank burrow, or a combina-
tion of these), and trees are also used for lodge
and dam building (Willson 1971, Lahti and
Helminen 1974, M€uller-Schwarze 2011). Beavers
are known to build dams in order to regulate the
water level at the site of the lodge, but lodges can
also be in stream, river, and lake shores without
dams. Beavers require a territory of approxi-
mately 2 km of shoreline (Hartman 1994). Mostly
two-year-old subadults disperse up to 3–13 km a
year (in the Eurasian beaver) but often stay close
to natal habitat if there is suitable habitat available
(Hartman 1994, M€uller-Schwarze 2011). Also
adult beavers may abandon the lodge and move
to a new area when food resources become scarce
(i.e., when they have consumed all suitable trees).

Data on beavers
Monitoring counts have been carried out every

third year since 1995. Local hunters counted the
number of active winter lodges in autumn
(September–November), usually in connection
with moose hunting, in the area of their hunting
association. Food storage or other signs of activ-
ity should be seen in the vicinity of an inhabited
winter lodge. Hunters reported the number of
winter lodges including the absence of winter
lodges (i.e., count of zero). In addition, the type
of winter lodge (bank burrow, bank lodge, or
free-standing lodge) was recorded, as well as the
estimated number of beavers, hunting bag of
beavers, and the damage caused by beavers
(flooded area or cut trees). Hunters returned the
report to the Finnish Game and Fisheries
Research Institute (nowadays part of the Natural
Resources Institute Finland, Luke) via the Fin-
nish Wildlife Agency.

Winter lodges of the two beaver species cannot
be distinguished. We considered winter lodges to
belong either to Eurasian or North American
beavers depending on the municipalities (Fig. 1).
The rationale for this geographic division is
based partly on historic information on the intro-
duction and spread of the two beaver species
(see Introduction), and partly on findings of the
identities of beavers hunted in the municipalities.
In particular, beaver skulls were collected from
hunters for species determination, especially
from the hunting districts where both species
might occur (Fig. 1; eastern parts of Satakunta,

western parts of Pohjois-H€ame, and southern
parts of Pohjanmaa). DNA and morphometric
analyses of the skulls confirmed species identity.
In other areas, the identity of the species was
presumed according to the history of beavers in
Finland. Thus, for the period considered in this
study, we consider the municipalities of Eurasian
and North American beavers as distinct sets of
local populations.

Model
We fitted the data to single-census open popu-

lation N-mixture models, which were originally
formulated by Dail and Madsen (2011) and
extended by Hostetler and Chandler (2015). We
here briefly summarize the conceptual aspects of
this model. Details of the full model are provided
in Appendix S1. The open population N-mixture
models assumed that several local populations
(sites) were censused at some time interval. The
initial abundance N at time t = 1 at site i was
assumed to be

Ni1 � f ðh1Þ (1)

where h1 is a vector of one or multiple parame-
ters describing a distribution, either a negative
binomial (h1 includes both mean initial abun-
dance Λ and dispersion parameter a), a Poisson
(h1 includes Λ), or a zero-inflated Poisson distri-
bution (h1 includes both mean initial abundance
Λ and the proportion of local populations with
abundance of zero). Covariates x on initial abun-
dance Λ for site i were included using a logarith-
mic link, where

Ki ¼ exp K0 þ
X
c

Kcxci

 !
. (2)

The dynamics in the consecutive n time steps
are then given by the recursive Poisson stochastic

Nit �PðNiðt�1Þf ðhtÞ þ iÞ (3)

where ht is a vector of one or more (possibly
time-varying) parameters specified by a certain
population-dynamical equation and ι is the
expected number of immigrants in a local popu-
lation. In the Dail and Madsen (2011) model, f(ht)
includes separate estimators of survival and
reproduction. In the extension of this model by
Hostetler and Chandler (2015), the generalization
to include Ricker logistic (ht includes both
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maximal potential growth rate r and carrying
capacity K; Ricker 1954)

Nit �P Ni;t�1 exp r 1�Ni;t�1

K

� �� �
þ i

� �
(4)

and Gompertz logistic dynamics (ht includes
both maximal potential growth rate r and carry-
ing capacity K; Gompertz 1825),

Nit �P
�
Ni;t�1

� exp
�
r
�
1� logðNi;t�1Þ þ 1

logðK þ 1Þ
��

þ i

� (5)

as well as immigration ι. Covariates x for
growth rate r at site i at time t were modeled
using a logarithmic link as

rit ¼ exp r0 þ
X
c

rcxitc

 !
. (6)

Under the assumption of a specific mixture
model for initial abundance and consecutive
dynamics, this state process describes the popu-
lation dynamics of local population i over time t
as latent abundance states Nit. These latent states
are then compared to the observed data yit,
assuming that

yit �B Nit; pitð Þ (7)

where pit is the probability to detect a beaver
lodge at time t in municipality i. The detection
probability was hence inferred directly from the
comparison of the time series in latent-state
abundances N (which are assumed to be Marko-
vian) to observed data y (Dail and Madsen 2011).
The effect of the number of reports on detection
probability for site i at time t was modeled
assuming a logistic link as

pit ¼ expit p0 þ preportsReportsit þ eit
� �

¼ exp p0 þ preportsReportsit þ eit
� �

1þ exp p0 þ preportsReportsit þ eit
� � (8)

where “expit” denotes the inverse logit, which is
further written out explicitly. An overview of all
parameters and covariates in the model is provided
in Table 1. Below, we detail the covariates used.

Municipalities and their landscape composition
Each site i in the model outlined above was a

municipality in Finland where beavers were

counted (Fig. 1). Municipalities were defined
according to borders in 2013 (National Land Sur-
vey of Finland 2/2015), and some older monitor-
ing counts in originally separate municipalities
were thus combined according to what the
municipalities’ borders were in 2013. Landscape
variables were used as covariate to explain abun-
dance at the first survey year (Eq. 1, i.e., as
covariate for beaver abundance in 1995). Land-
scape variables were computed in ArcMap 10.2.
(ESRI 2011). Given the biology of beavers, we
assumed that important metrics are those
describing the length of watercourses, water
areas, and mixed and deciduous forest (cf. Kau-
hala and Turkia 2013). The total length of water-
courses (streams with width ≤20 m, in units of
10 km) and the total area of water areas (lakes

Table 1. Synopsis of the model terms, following the nota-
tion of Hostetler and Chandler (2015), and the covari-
ates used in the information-theoretical modeling.

Parameter Explanation

Λ Mean initial abundance
w Proportion of sites potentially occupied by

the species
a Dispersion parameter of negative binomial

distribution
r Population growth rate in Ricker or

Gompertz model
K Carrying capacity in Ricker or Gompertz

model
p Detection probability
ι Immigration, modeled as a number added

each time step to each site
c Recruitment probability in the Dail and

Madsen (2011) formulation
x Survival probability in the Dail and Madsen

(2011) formulation
rep Number of reports on winter beaver lodges

reported in the municipality
prox Proximity (Eq. 9) of the municipality to the

species’ introduction site(s)
str Area covered by watercourses in the

municipality
lak Area covered by lakes and larger water

areas in the municipality
for Area covered by deciduous and mixed

forest in the municipality
hunting Hunting pressure in the district to which the

municipality belongs
temp Geometric mean temperature in the three

winters between censuses in the
municipality

snow Geometric mean snow cover in the three
winters between censuses in the
municipality
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and large rivers, in units of ha) in a municipality
were computed using the large-scale topographi-
cal map (1:100,000) in the open digital data of the
National Land Survey of Finland (2/2015). In
general, the distribution area of the North Ameri-
can beaver covers the areas in Finland where
large lakes are abundant, whereas in the distribu-
tion area of the Eurasian beaver large lakes are
scarce and aquatic habitats consist mostly of riv-
ers, streams, and even small ditches between
fields. We assumed that, from the perspective of
beavers, the amount of the above-outlined aqua-
tic habitats represents the size of each municipal-
ity and therefore we did not include the total
area size of a municipality as a covariate.

The pooled percentage (%) of deciduous and
mixed forests covering the landscape in a munic-
ipality was computed using the Corine land
cover maps of Finland in 2000 released by Fin-
nish Environment Institute (SYKE 2/2015). In
general, coniferous or mixed forests cover most
of Finland. Deciduous forests occur abundantly
only in the southwestern tip of Finland. Half
(50%) of forest tree species in Finland consist of
scots pine (Pinus sylvestris), 30% of Norway
spruce (Picea abies), 17% of birch (Betula pubescens
and Betula pendula), and 3% of other broadleaved
species. Other broadleaved tree species include
Eurasian aspen (P. tremula), alder (Alnus incana
and Alnus glutinosa), European mountain ash or
rowan (Sorbus aucuparia), and goat willow (Salix
caprea; Ylitalo 2013).

Hunting of beavers
North American beavers can be hunted freely

during the hunting season from 20 August to 30
April, although before 2001 a special license was
demanded. Catches of North American beavers
are reported voluntarily and their numbers are
hence indicative. A license is demanded to hunt
the Eurasian beaver and because there is a quota
for this species, the reporting of the number of
individuals hunted is accurate. In general, illegal
poaching may cause substantial differences
between reported and actual numbers killed.
However, in the case of the North American bea-
ver, hunting was not restricted during most of
the years studied. For the Eurasian beaver in Fin-
land, we believe that the official hunting statistics
present a reasonable estimate. Officials received
each year fewer applications for permits than

annual hunting quota for Eurasian beaver, and
obtaining permits was hence not highly restric-
tive for this species. The official hunting statistics
are gathered per hunting district (see Fig. 1) and
are reported by the Natural Resources Institute
Finland Luke (http://stat.luke.fi/metsastys).
We hypothesized that the intensity of hunting

would reduce population growth rate. We there-
fore calculated a measure of hunting pressure
(number of hunted beavers divided by the total
area covered by all municipalities where beavers
were counted in the hunting district). The hunt-
ing pressure for all municipalities belonging to a
hunting district was assumed to be equal.

Other covariates
We hypothesized that the initial abundance of

beaver lodges in municipality i could be affected
by the proximity of this municipality to the site(s)
where the Eurasian and North American beavers
were introduced. We hence calculated a weighted
mean proximity based on the distance d of
municipality i to introduction site j out of the k
introduction sites where we exponentially dis-
counted longer distances as

Proxi ¼
Xk
j¼1

expð�dijÞ (9)

where dij was the Euclidean distance (in units of
100 km). For the Eurasian beaver, there was only
one introduction site (Noormarkku, Satakunta)
where beavers survived and proximity of munici-
palities in which the Eurasian beaver occurred
was hence with respect to this site only. For the
North American beaver, there were four introduc-
tion sites and the proximity considers the spatial
distances of each municipality to all these sites.
We hypothesized that climatic variation could

affect the growth rate (r) of the population. We
extracted weather information from the Finnish
Meteorological Institute (FMI). We considered all
weather stations situated up to 200 km from the
outer municipalities where North American and
Eurasian beavers occurred, respectively. For each
of these weather stations, the arithmetic average
temperature and snow cover recorded in the
winter months (December–February) were com-
puted. For each three-year census period, we
then calculated the geometric mean of three win-
ters relevant to the time period. For example, to
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explain the dynamics between 1995 and 1998, the
winters of 1995/1996, 1996/1997, and 1997/1998
were included. In order to arrive at a measure of
winter weather for each municipality, we used
ordinary kriging (Cressie 1993) over the geomet-
ric mean winter weather of all weather stations
with data for a particular census period. Ordi-
nary kriging assumes a spatial autocorrelation in
the data, where the correlation between two sites
reduces following an exponential function of the
distance between two sites. Based on the kriging
parameters, geometric mean winter weather was
predicted for the center coordinate of each
municipality. The ordinary kriging and predic-
tions were performed using the R package
“gstat” (Pebesma 2004) in R (R Core Team 2015).

Prior to analysis, we mean standardized prox-
imity, the amount of watercourses and water
areas, the amount of deciduous and mixed forest,
temperature, and snow depth in order to con-
sider deviation (both negative and positive) from
the zero-mean intercept due to these covariates.

Model selection and Bayesian model construction
We followed the approach by Hostetler and

Chandler (2015) and first selected the most parsi-
monious model using Akaike’s information crite-
rion (AIC)-based model selection where models
were solved using a likelihood-based approach.
These models were implemented in a likelihood
framework in the package “unmarked” (Fiske
and Chandler 2011) in R (R Core Team 2015).
Hostetler and Chandler (2015) used simulations
to show that AIC-based model selection was effi-
cient in identifying the correct candidate model.
As in Hostetler and Chandler (2015), after model
selection, we constructed a Bayesian version of
the most parsimonious model. The Bayesian ver-
sion of the model was implemented in JAGS
(Plummer 2003). Transferring to the Bayesian
framework is done here because (1) it allows
explicit calculations to be made with the latent-
state variables and hence estimation of total
population sizes for either the whole or part of
Finland, (2) it allows a flexible addition of ran-
dom effects to the model in an effort to improve
model fit. A general approach for improving fit
of a Bayesian model is to add random effects in
order to explicitly model variance in model
parameters, which would otherwise be assumed
to be determined completely by the intercept and

possible fixed effects included (e.g., K�ery and
Schaub 2012). Hostetler and Chandler (2015)
added random effects to describe inter-annual
variation in population growth rate and detec-
tion probability, but did not specifically assess
the fit of their models.
Fit of the model to the data was assessed using

Bayesian posterior predictive checks (PPC; Gel-
man et al. 2004). For each iteration of posteriors,
we calculated for each municipality i in which
beaver lodges were counted at time t the Free-
man–Tukey discrepancy as a statistic of fit com-
paring the observed number of beaver lodges
with the expected number of beaver lodges as

Dobs
t ¼

Xk
i

ffiffiffiffiffi
yit

p � ffiffiffiffiffiffiffiffiffiffiffi
Nitpit

p� �2
. (10)

In addition, for each iteration of posteriors, the
Freeman–Tukey discrepancy measure Drep

t was
calculated following the same logic as Eq. 6
except using a replicate model-predicted observed
number of beaver lodges and the prediction.
Again, Drep

t was calculated for each municipality i
where beaver lodges were counted at time t. That
is, discrepancy was only calculated when there
were observed data. The posterior draws for the
replicate model-predicted census data Drep

t pro-
vided the reference distribution under the null
hypothesis that the model fits the data. A so-
called Bayesian P-value describing model fit can
then be computed as the proportion of times that
the posterior of discrepancy in the observed data
Dobs

t has a more extreme value than Drep
t . The

Bayesian P-value should be close to 50% under
the null hypothesis that the model parameters
predict the number of beaver lodges. While
extreme Bayesian P-values (close to 0 or 1) sug-
gest a poor model fit, it should nevertheless be
noted that the procedure does not provide an a
priori-defined rigorous threshold value for signifi-
cant deterioration in model fit and is hence a
descriptive technique.
We performed a PPC for the AIC-based most

parsimonious model, and, following Hostetler
and Chandler (2015), for a model with (1)
between-year residual variation in population
growth rate (r), (2) between-year residual varia-
tion in population growth rate (r) and detection
probability (p). We then (3) further extended
residual variation in detection probability to
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include both variation over municipalities and
years. For comparison, we also ran models with
random effects on other parameters, but this did
not qualitatively change the results of model fit
and these results are not reported in this paper.

As a derived parameter, we calculated the sum
of the abundance of lodges over all municipali-
ties in each hunting district and for the whole of
Finland for each census year, which hence esti-
mated the total population of the respective bea-
ver species in hunting districts and nation-wide,
respectively.

The Bayesian model (Text S1) was imple-
mented in JAGS (Plummer 2003), based on three
chains. For the data on the Eurasian beaver, we
ran 50,000 iterations after a burn-in of 5000 itera-
tions, sampling every 50th value. For the data on
the North American beaver, after a burn-in of
10,000 iterations, an additional 300,000 model
iterations were run where every 300th iteration
was saved as posteriors. Mixing of the chains
was assessed by eye and Gelman–Rubin statistic
(Gelman et al. 2004). The details of the model
construction, prior settings, and evaluation are
presented in Appendix S1.

RESULTS

Description of the data used
There were 168 and 29 municipalities where the

North American and Eurasian beaver occurred,
respectively (Fig. 1, Table 1). For the Eurasian
beaver, the reporting intensity was higher than
for the North American beaver (Table 1; 80% vs
65%, v2 = 15.6, df = 1, P < 0.001). When one or
more reports were filed for a census occasion,
reporting was reasonably active with on average
approximately eight and four reports for North
American and Eurasian beavers, respectively.
Typically, 5–6 beaver winter lodges were reported
per census occasion, although the variation in the
number of lodges was considerable (Table 1). In
18% (213/1176) and 14% (30/203) of all census
occasions, North American and Eurasian beavers,
respectively, were reported to be absent. In 24%
(40/168) and 10.3% (3/29) of the municipalities,
no North American and Eurasian beavers,
respectively, were recorded during the whole
study period.

In terms of the covariates used for the various
model parameters, differences between beaver

species reflected differences in landscape struc-
ture and climate in the parts of Finland occupied
by the species (Fig. 1, Table 2). The most note-
worthy difference is that the hunting pressure on
North American beavers tended to be larger than
on the Eurasian beaver (Table 2).

Model selection
In general, model comparison based on AIC

showed clear difference in AIC values of the dif-
ferent candidate models for the dynamics of
North American and Eurasian beavers
(Appendix S1: Table S1). The negative binomial
distribution best explained initial abundance in
1995 in both beaver species (section A in
Appendix S1: Table S1). The number of reports
filled in a municipality was an important covari-
ate for detection in both species (section B in
Appendix S1: Table S1). For both species, models
including immigration had lower AIC and
thereby fitted the data better than models with-
out immigration. The Gompertz logistic model
with immigration provided the most parsimo-
nious description of the census data of both
North American and Eurasian beavers (section C
in Appendix S1: Table S1). The amount of water-
courses and water areas in a municipality and its
proximity to the sites where the species was
introduced positively affected the initial abun-
dance of North American beavers, and, in addi-
tion to these variables, the amount of deciduous
and mixed forest positively affected initial abun-
dance in Eurasian beavers (section D in
Appendix S1: Table S1). Warmer winter tempera-
ture positively affected population growth rate
in the North American beaver, but did not have
consequences for the population growth in Eura-
sian beavers (section E in Appendix S1: Table S1).

The dynamics of North American and Eurasian
beavers in Finland
We constructed a Bayesian version of the most

parsimonious models for North American and
Eurasian beavers (details in Appendix S1). Poste-
rior predictive check of the most parsimonious
model for the North American and Eurasian bea-
vers revealed a poor fit to the data (pPPC = 0.01).
Following Hostetler and Chandler (2015), we
included additional random effects for between-
year variance in population growth rate (r,
pPPC = 0.01), followed by addition of between-
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year variation in detection (p, pPPC = 0.01). The
model with between-year variation in population
growth rate and between-year and between-site
variance in detection probability showed reason-
able fit to the data for the Eurasian beaver
(pPPC = 0.12). For the North American beaver,
however, this model still fitted the data poorly
(pPPC = 0.01) and only when residual variance in
detection probability was allowed to be heteroge-
neous (i.e., year specific) did the model show rea-
sonable fit to the data (pPPC = 0.22). Adding
uncertainty (random effects) to other parameters
did not increase the model fit for either species.

Parameter estimates of the final Bayesian mod-
els showed that population growth rate in North
American beavers was very low (transformed r0
was close to zero, Table 3). The observed decline
of North American beavers was largely caused
by a low carrying capacity (approximately six
winter beaver lodges per municipality, Table 3),
which was surprisingly low especially when
compared with mean initial abundance (Λ was
approximately 36, Table 3). The effect of covari-
ates when based on the Bayesian model showed
that initial (i.e., 1995) abundance of North Ameri-
can beavers was higher in municipalities with
more bodies of water (streams and lakes), which

were closer to the sites of introduction (Table 3).
However, the positive effect of temperature on
the population growth rate, which the AIC-based
model selection suggested to be important
(Appendix S1: Table S1), was in this final model
not statistically significant (Table 3). Again, an
important aspect of the Bayesian model for
fitting reasonably well to the data was that
heterogeneity in detection probability p across
municipalities was larger in the last three survey
years compared to the first five survey years
(Table 3). After 2001, hunters did not need a
hunting license for North American beavers any-
more. Most likely, this increased heterogeneity
(and reduced average level of reporting) was
associated with this change in legislation.
The parameters of the Bayesian model for the

dynamics of the Eurasian beaver revealed a strik-
ingly different pattern compared to the North
American beaver. Despite having about equal
initial mean abundance as the North American
beaver (approximately 32 winter lodges per
municipality, Table 3), Eurasian beavers had a
clearly positive population growth rate and high
carrying capacity (about 214 lodges per munici-
pality, Table 3). In the Bayesian implementation
of the model, AIC-selected covariates for initial

Table 2. Descriptive statistics of the information used in the model.

Characteristic North American Eurasian

Municipalities 168 29
Total no. census occasions 1176 203
No. census occasions with ≥1 report filed (%) 768 (65) 162 (80)
No. reports/census occasion with ≥1 report filed 8.1 (1, 79) 4.1 (1, 14)
No. lodges/census occasion with ≥1 report filed 4.6 (0, 400) 5.6 (0, 164)
Municipality-specific covariates (95% CRI)
Proximity to introduction sites 3.21 (2.73, 3.45) 0.95 (0.92, 0.99)
Streams (km) 2950 (243, 11046) 1540 (367, 4446)
Lakes (ha) 15515 (246, 64076) 2650 (115, 10315)
Deciduous and mixed forest (%) 22.8 (13.4, 35.5) 16.3 (7.2, 24.9)

Municipality- and year-specific covariates (95% CRI)
Hunting pressure (beavers per 1000 ha per 3 yr) 0.37 (0, 1.80) 0.020 (0, 0.055)
Snow depth (cm) 27.3 (17.7, 33.9) 15.4 (8.1, 21.9)
Temperature (°C) –7.7 (–10.0, –5.0) –4.7 (–7.4, –2.5)

Notes: Presented are the mean with, when relevant, the minimal and maximal value, and 95% credible interval (CRI)
between brackets. Each municipality has a census occasion every third year during the study period consisting of seven
censuses in total (1995–2013). The total number of (no.) census occasions was hence seven times the number of municipalities
censused. We list in how many of these census occasions at least one report was made, and statistics for the number of reports,
as well as how many beaver lodges were reported, per census occasion with at least one report made. Municipality-specific
covariates were used to model initial abundance and are specific to the start of the study period (1995). Municipality and year-
specific covariates varied both over space and time. Hunting pressure is the number of beaver killed per 1000 ha in the game
management district in the three-year time interval between the censuses. Temperature and snow depth are averages for
December–February in the three-year period between the censuses in the municipalities studied.

 ❖ www.esajournals.org 9 September 2017 ❖ Volume 8(9) ❖ Article e01947

BROMMER ET AL.



abundance were not significantly different from
zero (Table 3).

Detection probability of beaver lodges was
low (approximately 20% and 35% for North
American and Eurasian beaver, respectively, at
the average level of reporting as indicated by
dashed vertical lines in Fig. 2), although it
rapidly increased when additional reports were

made in the municipality, especially for the Eura-
sian beaver (Fig. 2, Table 3). The total abundance
of beaver lodges in Finland varied during the
study period (Fig. 3). Qualitatively, the pattern of
estimated number of lodges corresponded rea-
sonably well with the total numbers counted
(black line in Fig. 3) and a simple index of abun-
dance, the number of lodges divided by the

Table 3. Parameters estimated by the Bayesian version of the single-census open population N-mixture model by
Hostetler and Chandler (2015) for the number of lodges of North American and Eurasian beaver in 169 munici-
palities in Finland 1995–2013 censused every third year.

Parameter Scale

Transformed scale Data scale

Mean 2.5% 97.5% Mean 2.5% 97.5%

North American beaver
a 0.69 0.50 0.91
Λ exp 3.6 3.2 3.9 35.9 25.5 50.6
K exp 1.8 �1.4 2.9 6.2 0.24 17.3
r0 exp �3.9 �18.2 �2.2 0.02 10�8 0.11
ι 0.16 0.02 0.39
p0 logit �2.2 �2.5 �1.8 0.10 0.08 0.14

Covariate (parameter)
Prox. to intro (Λ) exp 3.6 2.3 5.0
Streams (Λ) exp 0.02 0.01 0.03
Lakes (Λ) exp 0.02 0.01 0.03
Temperature (r) exp 0.61 �1.0 2.0
Reports (p) logit 0.10 0.08 0.12

Variances
Var in r over years 0.07 0.01 0.40
Var in p 1995–2004 0.37 0.21 0.57
Var in p 2007–2013 0.69 0.23 1.1

Eurasian beaver
a 0.43 0.20 0.83
Λ exp 3.4 2.6 4.3 32.2 12.9 71.8
K 214 129 360
r0 exp 0.72 0.08 1.63 2.1 1.1 5.1
ι 0.33 0.08 0.75
p0 logit �1.7 �2.4 �1.0 0.15 0.09 0.27

Covariate (parameter)
Prox. to intro (Λ) exp 15.7 �4.2 34.2
Streams (Λ) exp 0.04 �0.04 0.14
Lakes (Λ) exp �0.14 �0.45 0.25
Forest (Λ) exp 0.14 �0.06 0.35
Reports (p) logit 0.25 0.14 0.39

Variances
Var in r over years 1.2 0.04 3.5
Var in p 0.78 0.39 1.4

Notes: Akaike’s information criterion-based model selection (Appendix S1: Table S1) led to the modeling of initial abundance
following a negative binomial distribution with dispersion parameter a and mean initial abundance Λ. Mean initial abundance
Λ, growth rate r, and detection probability p were modeled as being dependent on a number of covariates (see Appendix S1 for
further explanation). Consecutive dynamics assumed Gompertz logistic growth with growth rate r0 in the absence of the effect
of covariates, and carrying capacity K, as well as immigration (ι). Estimated abundances were assumed to be observed with
binomial probability p0 for which the covariate was the number of observation reports filled by local volunteers in each munici-
pality. Parameter values are noted on the scale in which they were estimated in the model, and parameters for the intercept
values are also back-transformed to the data scale. Parameter estimates for covariates whose 95% credible interval did not
include 0 are considered as statistically significant and appear in boldface.
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number of reports (red line in Fig. 3). Numeri-
cally, nevertheless, the model allowed compar-
ison of abundance changes within species across
years and also between species by incorporating
the difference in reporting (Fig. 3c, d). The num-
ber of winter lodges of North American beavers
declined during the study period (geometric
mean population growth rate was 0.95, 95%
credible interval [CRI]: 0.93, 0.97), but increased
for Eurasian beavers (1.11, 95% CRI: 1.06, 1.17).

DISCUSSION

We here describe the dynamics of the number
of family groups (winter lodges) of Eurasian and

North American beavers in Finland using a
recently developed single-census open population
N-mixture model (Hostetler and Chandler 2015).
An exciting feature of this model approach is that
it estimates abundance by correcting for the detec-
tion probability of the species censused. Thus, the
model produces abundance estimates over both
time and space, which can be used for numerical
comparisons. The modeling results underline the
similarity of the two beaver species studied, with
respect to their population dynamics. Dynamics
in both species is density dependent following
Gompertz (1825) formulation, and immigration is
an important aspect. Another striking feature is
that in the North American beaver the initial
abundance (i.e., abundance in 1995) is higher in
municipalities, which are closer to the original
introduction site(s). Hence, a spatial signature of
the introduction is still observable six decades
after the beaver species were introduced. This
might indicate limits in dispersal capacity or that
there are still suitable habitats near introduction
sites, and therefore, distribution ranges have not
expanded more (Nolet and Rosell 1994).
Our findings demonstrate that Eurasian bea-

vers are numerically increasing in Finland, while
North American beavers, although currently
more widespread, are declining in numbers. The
primary reason behind this difference in dynam-
ics appears to be the surprisingly low carrying
capacity (K) in North American beaver lodges in
combination with a low intrinsic rate of popula-
tion increase (r) in the Gompertz dynamics for
this species. It is currently not clear what the rea-
sons are for the low values of these estimated
parameters. In particular, North American
beavers have a larger litter size than Eurasian
beavers. However, it is likely that these parame-
ters are strongly affected by the hunting on this
species. Although our models suggest that inclu-
sion of hunting pressure is not very important, it
should be noted that our estimates of hunted
North American beavers are coarse, both spa-
tially (hunting statistics on the level of munici-
pality are not available), and in terms of accuracy
because hunting statistics are built by sending an
inquiry to only a fraction (about 2%) of hunters.
It is difficult to evaluate the effect of habitat
parameters on North American beaver numbers,
because hunting likely affects key population
parameters of the North American beaver

Fig. 2. The probability to detect a beaver winter
lodge during a census of a municipality as a function
of how many reports were received from volunteers.
The posterior mean (line) and its 95% credible interval
are plotted over the range of reports filed. The dashed
vertical line indicates the mean number of reports filed
per municipality.
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population and thus their local abundance in dif-
ferent habitats in a manner which we cannot
fully address within our model. Still, our find-
ings in this respect are intuitive; North American
beavers show a high mean initial abundance in
municipalities with more water areas and water-
courses. A comprehensive water system also
enables beavers to move more broadly in search
of food. Winter temperature, which AIC-selected
modeling suggested to be a covariate affecting
intrinsic population growth rate in North Ameri-
can beavers, was not significant in the Bayesian
implementation of the model. Likewise, all AIC-
selected covariates for initial abundance for the
Eurasian beaver were not significant in the final
Bayesian implementation of the model. In gen-
eral, the addition of random effects increases
parameter uncertainty in population ecological
models (K�ery and Schaub 2012). Hostetler and
Chandler (2015) also noted that estimates change
when random effects were added in the Bayesian

implementation of their model. Importantly,
however, the addition of random effects did pro-
duce models with a reasonable fit to the data as
assessed using PPC, whereas the AIC-selected
models fitted the data very poorly. Thus, we find
that evaluation of fit of the single-census open
population N-mixture model followed by—
when needed—inclusion of random effect(s) is a
crucial aspect of model building before drawing
model inferences. Nevertheless, our list of covari-
ates clearly does not cover all aspects relevant to
beavers. For example, aquatic vegetation (Law
et al. 2014) and agricultural plants may affect the
Eurasian beaver population sizes also at large
scale (instead of the covariates used here).
The inclusion of spatio-temporal heterogeneity

in detection probability is an essential aspect of
the use of count data, because drawing inferences
on “raw” count data implicitly makes the strong
assumption that numbers counted are equal or at
least proportional to true abundance (Royle 2004).

Fig. 3. Population dynamics of the number of lodges of (a) North American and (b) Eurasian beavers in Fin-
land during 1995–2013 based on monitoring every third year. For each species, the model prediction (blue line
with 95% credible interval) and sum of all observed lodges (black line) are shown as well as the mean number of
lodges counted per report (red line; scale on right-hand side). The lower panels show the average number of
reports per municipality of (c) North American and (d) Eurasian beaver lodges filed during the study period.
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For this reason, a dimensionless “abundance
index” is often constructed and temporal dynam-
ics of species is inferred on the basis of this index
(Sutherland 1996). However, a particular chal-
lenge then arises when the interest is in compar-
ing count data across species, as, for example, in
our case, where one would want to get a handle
on the actual abundance of the species. Doing so
requires information on the detection probability
(K�ery and Schaub 2012). Our use of the single-
census open population N-mixture model shows
that even closely related and ecologically similar
species may showmarked differences in detection
probability and especially in how the probability
of detection depends on reporting intensity. To
achieve an 80% detection probability for Eurasian
beaver winter lodges, approximately 13 reports
are needed per municipality, whereas for North
American beavers the required reporting intensity
was approximately 40 reports per municipality.
With greater reporting intensity, the probability to
detect Eurasian beaver winter lodges increases
faster than the probability to detect North Ameri-
can beaver winter lodges. This difference in how
detection changes with reporting intensity likely
stems from the relatively higher densities in the
municipality of Eurasian compared to North
American beavers. For both species, nevertheless,
the level of reporting required to reach 80% prob-
ability of detection is markedly above the typical
reporting intensity. For the North American bea-
ver, it is furthermore apparent that the willingness
to report beaver lodges decreased when a hunting
license for this species was not demanded any
more. Reasonable model fit for this species is only
achieved by allowing considerable heterogeneity
in detection probability, both across sites and
across years. Thus, in order to fit the data, the
model requires that each census in a given munic-
ipality at a specific point in time is viewed as an
event with an own “unique” probability of detec-
tion. Such heterogeneity likely partly reflects the
fact that there are unknown covariates for the
observation process. Indeed, the “number of
reports” is only a coarse description of factors
affecting detection probability, primarily because
it does not contain information on the survey
effort behind a report, which conceivably varies
both in time and space. Notably, however, hetero-
geneity in detection probability may simply be an
inherent aspect of census counts, especially when

conducted by citizens. It is in general considered
challenging to obtain reasonable model fit for
open population N-binomial mixture models
(K�ery and Schaub 2012). Despite the challenges
in fitting the single-census open population
N-binomial mixture model, it is also evident that
this approach facilitates comparison of large-scale
population dynamics to be made within species
over time and between species in terms of biologi-
cally relevant properties.
Data collection by volunteers presents an excit-

ing opportunity for ecologists to work on large
spatial and temporal scales (Bonney et al. 2014).
At the same time, such data are inherently chal-
lenging to analyze, and require harnessing new
statistical modeling approaches (Hochachka et al.
2012, Isaac and Pocock 2015). Voluntary reporting
of single species, as used for the beaver winter
lodge data analyzed in this paper, is a census tech-
nique likely to result in underreporting (Suther-
land 1996). There is no non-arbitrary solution to
the issue of high heterogeneity in voluntary report-
ing other than to convince volunteers to increase
their reporting intensity in all regions, also when
beavers are assumed to be rare or absent. Technical
advances, which lower the threshold of reporting,
have been heralded as an important develop-
ment in citizen science (Bonney et al. 2014).
Furthermore, citizen-science monitoring schemes
designed to census multiple species at the same
time, based on checklists, automatically include a
more systematic reporting of absences and low
counts for each species compared to voluntary
censuses of specific species such as the Finnish
beaver monitoring scheme. Nevertheless, our
findings show that the single-census open popula-
tion N-mixture model by Hostetler and Chandler
(2015) can be a good tool to obtain population
ecological insight using large-scale citizen-science
single-species monitoring data.
Although the single-census-per-survey scheme

in our case produced reasonable inferences on
abundance and dynamics, we caution against
interpreting this survey approach as a good over-
all solution. Large-scale monitoring of any
organism using volunteer efforts is clearly cost-
effective, but comes at the price of collecting data
with high heterogeneity in detection probability.
Any approach that collects information to explic-
itly estimate detection probability from the data
(e.g., repeated censuses, distance sampling) will
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allow stronger inferences (Royle and Dorazio
2008), as illustrated in our findings by the need to
include high uncertainty in detection. Neverthe-
less, the Hostetler and Chandler (2015) modeling
approach opens up exciting research avenues in
terms of, for example, understanding invasive
species dynamics or carrying out comparative
studies across species of key population dynami-
cal parameters, on the basis of relatively “cheap
but messy” survey data. In general, further spatial
aspects could include conditioning of the growth
rate or the immigration rate on the spatial location
of the site, for example, through auto-regressive
arguments (Banerjee et al. 2004) where the popu-
lation abundance in neighboring sites plays a role
in determining the dynamics of a specific site.
Furthermore, the distribution of the two beaver
species in Finland will likely become increasingly
overlapping, and the use of spatial information to
infer species identity will likely become a valuable
tool (cf. Conn et al. 2015), as well as inclusion of
the details of the landscape in terms of water sys-
tems (dispersal corridors) and watershed areas
(dispersal barriers).
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